On My Way...

Welcome to the Mathematical World!

Trigonometric Chocolate Bar!!!

What does it mean by Trigonometric Chocolate Bar!? Is it edible? Actually, this is a normal purpose trigonometric table, with the values prescribed on it in terms of radicals, equations or sets. The main specialty of this trigonometric "Chocolate Bar" is that it has two features, one is the value of each of the trigonometric values in terms of approximate decimals (click or tap on the values), and the other is the exact value in terms of radicals, equations or sets. Many of them are directly or indirectly derived from the basic trigonometric formulae of addition and subtraction. If there is any mistake, please contact us. Enjoy! Note that, \(\phi\) represents the golden ratio, which is equal to \(\frac{1+\sqrt{5}}{2}\), not that Empty Set or Alan Walker Set!!!.

Angle (degrees) Angle (radians) \(\sin \theta\) \(\cos \theta\) \(\tan \theta\) \(\cot \theta\) \(\sec \theta\) \(\csc \theta\)
\(0^\circ\) \(0\) \(0\) \(1\) \(0\) \(\text{undefined}\) \(1\) \(\text{undefined}\)
\(1^\circ\) \(\frac{\pi}{180}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n+1\right)!}\cdot\left(\frac{\pi}{180}\right)^{2n+1}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n\right)!}\cdot\left(\frac{\pi}{180}\right)^{2n}\) \(\frac{\sin1^\circ}{\cos1^\circ}\) \(\frac{\cos1^\circ}{\sin1^\circ}\) \(\frac{1}{\cos1^\circ}\) \(\frac{1}{\sin1^\circ}\)
\(2^\circ\) \(\frac{\pi}{90}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n+1\right)!}\cdot\left(\frac{\pi}{90}\right)^{2n+1}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n\right)!}\cdot\left(\frac{\pi}{90}\right)^{2n}\) \(\frac{\sin2^\circ}{\cos2^\circ}\) \(\frac{\cos2^\circ}{\sin2^\circ}\) \(\frac{1}{\cos2^\circ}\) \(\frac{1}{\sin2^\circ}\)
\(3^\circ\) \(\frac{\pi}{60}\) \(\frac{\left(\phi-1\right)\left(\sqrt{6}+\sqrt{2}\right)-\left(\sqrt{6}-\sqrt{2}\right)\sqrt{4-\left(\phi-1\right)^{2}}}{8}\) \(\frac{\left(\phi-1\right)\left(\sqrt{6}-\sqrt{2}\right)+\left(\sqrt{6}+\sqrt{2}\right)\sqrt{4-\left(\phi-1\right)^{2}}}{8}\) \(\frac{\left(\phi-1\right)\left(\sqrt{6}+\sqrt{2}\right)-\left(\sqrt{6}-\sqrt{2}\right)\sqrt{4-\left(\phi-1\right)^{2}}}{\left(\phi-1\right)\left(\sqrt{6}-\sqrt{2}\right)+\left(\sqrt{6}+\sqrt{2}\right)\sqrt{4-\left(\phi-1\right)^{2}}}\) \(\frac{\left(\phi-1\right)\left(\sqrt{6}-\sqrt{2}\right)+\left(\sqrt{6}+\sqrt{2}\right)\sqrt{4-\left(\phi-1\right)^{2}}}{\left(\phi-1\right)\left(\sqrt{6}+\sqrt{2}\right)-\left(\sqrt{6}-\sqrt{2}\right)\sqrt{4-\left(\phi-1\right)^{2}}}\) \(\frac{8}{\left(\phi-1\right)\left(\sqrt{6}-\sqrt{2}\right)+\left(\sqrt{6}+\sqrt{2}\right)\sqrt{4-\left(\phi-1\right)^{2}}}\) \(\frac{8}{\left(\phi-1\right)\left(\sqrt{6}+\sqrt{2}\right)-\left(\sqrt{6}-\sqrt{2}\right)\sqrt{4-\left(\phi-1\right)^{2}}}\)
\(4^\circ\) \(\frac{\pi}{45}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n+1\right)!}\cdot\left(\frac{\pi}{45}\right)^{2n+1}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n\right)!}\cdot\left(\frac{\pi}{45}\right)^{2n}\) \(\frac{\sin4^\circ}{\cos4^\circ}\) \(\frac{\cos4^\circ}{\sin4^\circ}\) \(\frac{1}{\cos4^\circ}\) \(\frac{1}{\sin4^\circ}\)
\(5^\circ\) \(\frac{\pi}{36}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n+1\right)!}\cdot\left(\frac{\pi}{36}\right)^{2n+1}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n\right)!}\cdot\left(\frac{\pi}{36}\right)^{2n}\) \(\frac{\sin5^\circ}{\cos5^\circ}\) \(\frac{\cos5^\circ}{\sin5^\circ}\) \(\frac{1}{\cos5^\circ}\) \(\frac{1}{\sin5^\circ}\)
\(6^\circ\) \(\frac{\pi}{30}\) \(\frac{\sqrt{12-3\phi^{2}}-\phi}{4}\) \(\frac{\sqrt{3}\phi+\sqrt{4-\phi^{2}}}{4}\) \(\frac{\sqrt{12-3\phi^{2}}-\phi}{\sqrt{3}\phi+\sqrt{4-\phi^{2}}}\) \(\frac{\sqrt{3}\phi+\sqrt{4-\phi^{2}}}{\sqrt{12-3\phi^{2}}-\phi}\) \(\frac{4}{\sqrt{3}\phi+\sqrt{4-\phi^{2}}}\) \(\frac{4}{\sqrt{12-3\phi^{2}}-\phi}\)
\(7^\circ\) \(\frac{7\pi}{180}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n+1\right)!}\cdot\left(\frac{7\pi}{180}\right)^{2n+1}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n\right)!}\cdot\left(\frac{7\pi}{180}\right)^{2n}\) \(\frac{\sin7^\circ}{\cos7^\circ}\) \(\frac{\cos7^\circ}{\sin7^\circ}\) \(\frac{1}{\cos7^\circ}\) \(\frac{1}{\sin7^\circ}\)
\(8^\circ\) \(\frac{2\pi}{45}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n+1\right)!}\cdot\left(\frac{2\pi}{45}\right)^{2n+1}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n\right)!}\cdot\left(\frac{2\pi}{45}\right)^{2n}\) \(\frac{\sin8^\circ}{\cos8^\circ}\) \(\frac{\cos8^\circ}{\sin8^\circ}\) \(\frac{1}{\cos8^\circ}\) \(\frac{1}{\sin8^\circ}\)
\(9^\circ\) \(\frac{\pi}{20}\) \(\frac{\phi-\sqrt{4-\phi^{2}}}{2\sqrt{2}}\) \(\frac{\sqrt{4-\phi^{2}}+\phi}{2\sqrt{2}}\) \(\frac{\phi-\sqrt{4-\phi^{2}}}{\sqrt{4-\phi^{2}}+\phi}\) \(\frac{\sqrt{4-\phi^{2}}+\phi}{\phi-\sqrt{4-\phi^{2}}}\) \(\frac{2\sqrt{2}}{\sqrt{4-\phi^{2}}+\phi}\) \(\frac{2\sqrt{2}}{\phi-\sqrt{4-\phi^{2}}}\)
\(10^\circ\) \(\frac{\pi}{18}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n+1\right)!}\cdot\left(\frac{\pi}{18}\right)^{2n+1}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n\right)!}\cdot\left(\frac{\pi}{18}\right)^{2n}\) \(\frac{\sin10^\circ}{\cos10^\circ}\) \(\frac{\cos10^\circ}{\sin10^\circ}\) \(\frac{1}{\cos10^\circ}\) \(\frac{1}{\sin10^\circ}\)
\(11^\circ\) \(\frac{11\pi}{180}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n+1\right)!}\cdot\left(\frac{11\pi}{180}\right)^{2n+1}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n\right)!}\cdot\left(\frac{11\pi}{180}\right)^{2n}\) \(\frac{\sin11^\circ}{\cos11^\circ}\) \(\frac{\cos11^\circ}{\sin11^\circ}\) \(\frac{1}{\cos11^\circ}\) \(\frac{1}{\sin11^\circ}\)
\(12^\circ\) \(\frac{\pi}{15}\) \(\frac{\sqrt{4-\left(\phi-1\right)^{2}}-\sqrt{3}\phi+\sqrt{3}}{4}\) \(\frac{\phi-1+\sqrt{12-3\left(\phi-1\right)^{2}}}{4}\) \(\frac{\sqrt{4-\left(\phi-1\right)^{2}}-\sqrt{3}\phi+\sqrt{3}}{\phi-1+\sqrt{12-3\left(\phi-1\right)^{2}}}\) \(\frac{\phi-1+\sqrt{12-3\left(\phi-1\right)^{2}}}{\sqrt{4-\left(\phi-1\right)^{2}}-\sqrt{3}\phi+\sqrt{3}}\) \(\frac{4}{\phi-1+\sqrt{12-3\left(\phi-1\right)^{2}}}\) \(\frac{4}{\sqrt{4-\left(\phi-1\right)^{2}}-\sqrt{3}\phi+\sqrt{3}}\)
\(13^\circ\) \(\frac{13\pi}{180}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n+1\right)!}\cdot\left(\frac{13\pi}{180}\right)^{2n+1}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n\right)!}\cdot\left(\frac{13\pi}{180}\right)^{2n}\) \(\frac{\sin13^\circ}{\cos13^\circ}\) \(\frac{\cos13^\circ}{\sin13^\circ}\) \(\frac{1}{\cos13^\circ}\) \(\frac{1}{\sin13^\circ}\)
\(14^\circ\) \(\frac{7\pi}{90}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n+1\right)!}\cdot\left(\frac{7\pi}{90}\right)^{2n+1}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n\right)!}\cdot\left(\frac{7\pi}{90}\right)^{2n}\) \(\frac{\sin14^\circ}{\cos14^\circ}\) \(\frac{\cos14^\circ}{\sin14^\circ}\) \(\frac{1}{\cos14^\circ}\) \(\frac{1}{\sin14^\circ}\)
\(15^\circ\) \(\frac{\pi}{12}\) \(\frac{\sqrt{6}-\sqrt{2}}{4}\) \(\frac{\sqrt{6}+\sqrt{2}}{4}\) \(2-\sqrt{3}\) \(2+\sqrt{3}\) \(\sqrt{6}-\sqrt{2}\) \(\sqrt{6}+\sqrt{2}\)
\(16^\circ\) \(\frac{4\pi}{45}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n+1\right)!}\cdot\left(\frac{4\pi}{45}\right)^{2n+1}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n\right)!}\cdot\left(\frac{4\pi}{45}\right)^{2n}\) \(\frac{\sin16^\circ}{\cos16^\circ}\) \(\frac{\cos16^\circ}{\sin16^\circ}\) \(\frac{1}{\cos16^\circ}\) \(\frac{1}{\sin16^\circ}\)
\(17^\circ\) \(\frac{17\pi}{180}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n+1\right)!}\cdot\left(\frac{17\pi}{180}\right)^{2n+1}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n\right)!}\cdot\left(\frac{17\pi}{180}\right)^{2n}\) \(\frac{\sin17^\circ}{\cos17^\circ}\) \(\frac{\cos17^\circ}{\sin17^\circ}\) \(\frac{1}{\cos17^\circ}\) \(\frac{1}{\sin17^\circ}\)
\(18^\circ\) \(\frac{\pi}{10}\) \(\frac{\phi-1}{2}\) \(\frac{\sqrt{4-\left(\phi-1\right)^{2}}}{2}\) \(\frac{\phi-1}{\sqrt{4-\left(\phi-1\right)^{2}}}\) \(\frac{\sqrt{4-\left(\phi-1\right)^{2}}}{\phi-1}\) \(\frac{2}{\sqrt{4-\left(\phi-1\right)^{2}}}\) \(\frac{2}{\phi-1}\)
\(19^\circ\) \(\frac{19\pi}{180}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n+1\right)!}\cdot\left(\frac{19\pi}{180}\right)^{2n+1}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n\right)!}\cdot\left(\frac{19\pi}{180}\right)^{2n}\) \(\frac{\sin19^\circ}{\cos19^\circ}\) \(\frac{\cos19^\circ}{\sin19^\circ}\) \(\frac{1}{\cos19^\circ}\) \(\frac{1}{\sin19^\circ}\)
\(20^\circ\) \(\frac{\pi}{9}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n+1\right)!}\cdot\left(\frac{\pi}{9}\right)^{2n+1}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n\right)!}\cdot\left(\frac{\pi}{9}\right)^{2n}\) \(\frac{\sin20^\circ}{\cos20^\circ}\) \(\frac{\cos20^\circ}{\sin20^\circ}\) \(\frac{1}{\cos20^\circ}\) \(\frac{1}{\sin20^\circ}\)
\(21^\circ\) \(\frac{7\pi}{60}\) \(\frac{\left(\sqrt{6}+\sqrt{2}\right)\sqrt{4-\phi^{2}}-\phi\left(\sqrt{6}-\sqrt{2}\right)}{8}\) \(\frac{\left(\sqrt{6}-\sqrt{2}\right)\sqrt{4-\phi^{2}}+\phi\left(\sqrt{6}+\sqrt{2}\right)}{8}\) \(\frac{\left(\sqrt{6}+\sqrt{2}\right)\sqrt{4-\phi^{2}}-\phi\left(\sqrt{6}-\sqrt{2}\right)}{\left(\sqrt{6}-\sqrt{2}\right)\sqrt{4-\phi^{2}}+\phi\left(\sqrt{6}+\sqrt{2}\right)}\) \(\frac{\left(\sqrt{6}-\sqrt{2}\right)\sqrt{4-\phi^{2}}+\phi\left(\sqrt{6}+\sqrt{2}\right)}{\left(\sqrt{6}+\sqrt{2}\right)\sqrt{4-\phi^{2}}-\phi\left(\sqrt{6}-\sqrt{2}\right)}\) \(\frac{8}{\left(\sqrt{6}-\sqrt{2}\right)\sqrt{4-\phi^{2}}+\phi\left(\sqrt{6}+\sqrt{2}\right)}\) \(\frac{8}{\left(\sqrt{6}+\sqrt{2}\right)\sqrt{4-\phi^{2}}-\phi\left(\sqrt{6}-\sqrt{2}\right)}\)
\(22^\circ\) \(\frac{11\pi}{90}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n+1\right)!}\cdot\left(\frac{11\pi}{90}\right)^{2n+1}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n\right)!}\cdot\left(\frac{11\pi}{90}\right)^{2n}\) \(\frac{\sin22^\circ}{\cos22^\circ}\) \(\frac{\cos22^\circ}{\sin22^\circ}\) \(\frac{1}{\cos22^\circ}\) \(\frac{1}{\sin22^\circ}\)
\(23^\circ\) \(\frac{23\pi}{180}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n+1\right)!}\cdot\left(\frac{23\pi}{180}\right)^{2n+1}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n\right)!}\cdot\left(\frac{23\pi}{180}\right)^{2n}\) \(\frac{\sin23^\circ}{\cos23^\circ}\) \(\frac{\cos23^\circ}{\sin23^\circ}\) \(\frac{1}{\cos23^\circ}\) \(\frac{1}{\sin23^\circ}\)
\(24^\circ\) \(\frac{2\pi}{15}\) \(\frac{\sqrt{3}\phi-\sqrt{4-\phi^{2}}}{4}\) \(\frac{\phi+\sqrt{12-3\phi^{2}}}{4}\) \(\frac{\sqrt{3}\phi-\sqrt{4-\phi^{2}}}{\phi+\sqrt{12-3\phi^{2}}}\) \(\frac{\phi+\sqrt{12-3\phi^{2}}}{\sqrt{3}\phi-\sqrt{4-\phi^{2}}}\) \(\frac{4}{\phi+\sqrt{12-3\phi^{2}}}\) \(\frac{4}{\sqrt{3}\phi-\sqrt{4-\phi^{2}}}\)
\(25^\circ\) \(\frac{5\pi}{36}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n+1\right)!}\cdot\left(\frac{5\pi}{36}\right)^{2n+1}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n\right)!}\cdot\left(\frac{5\pi}{36}\right)^{2n}\) \(\frac{\sin25^\circ}{\cos25^\circ}\) \(\frac{\cos25^\circ}{\sin25^\circ}\) \(\frac{1}{\cos25^\circ}\) \(\frac{1}{\sin25^\circ}\)
\(26^\circ\) \(\frac{13\pi}{90}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n+1\right)!}\cdot\left(\frac{13\pi}{90}\right)^{2n+1}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n\right)!}\cdot\left(\frac{13\pi}{90}\right)^{2n}\) \(\frac{\sin26^\circ}{\cos26^\circ}\) \(\frac{\cos26^\circ}{\sin26^\circ}\) \(\frac{1}{\cos26^\circ}\) \(\frac{1}{\sin26^\circ}\)
\(27^\circ\) \(\frac{3\pi}{20}\) \(\frac{\sqrt{4-\left(\phi-1\right)^{2}}-\phi+1}{2\sqrt{2}}\) \(\frac{\phi-1+\sqrt{4-\left(\phi-1\right)^{2}}}{2\sqrt{2}}\) \(\frac{\sqrt{4-\left(\phi-1\right)^{2}}-\phi+1}{\phi-1+\sqrt{4-\left(\phi-1\right)^{2}}}\) \(\frac{\phi-1+\sqrt{4-\left(\phi-1\right)^{2}}}{\sqrt{4-\left(\phi-1\right)^{2}}-\phi+1}\) \(\frac{2\sqrt{2}}{\phi-1+\sqrt{4-\left(\phi-1\right)^{2}}}\) \(\frac{2\sqrt{2}}{\sqrt{4-\left(\phi-1\right)^{2}}-\phi+1}\)
\(28^\circ\) \(\frac{7\pi}{45}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n+1\right)!}\cdot\left(\frac{7\pi}{45}\right)^{2n+1}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n\right)!}\cdot\left(\frac{7\pi}{45}\right)^{2n}\) \(\frac{\sin28^\circ}{\cos28^\circ}\) \(\frac{\cos28^\circ}{\sin28^\circ}\) \(\frac{1}{\cos28^\circ}\) \(\frac{1}{\sin28^\circ}\)
\(29^\circ\) \(\frac{29\pi}{180}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n+1\right)!}\cdot\left(\frac{29\pi}{180}\right)^{2n+1}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n\right)!}\cdot\left(\frac{29\pi}{180}\right)^{2n}\) \(\frac{\sin29^\circ}{\cos29^\circ}\) \(\frac{\cos29^\circ}{\sin29^\circ}\) \(\frac{1}{\cos29^\circ}\) \(\frac{1}{\sin29^\circ}\)
\(30^\circ\) \(\frac{\pi}{6}\) \(\frac{1}{2}\) \(\frac{\sqrt{3}}{2}\) \(\frac{1}{\sqrt{3}}\) \(\sqrt{3}\) \(\frac{2}{\sqrt{3}}\) \(2\)
\(31^\circ\) \(\frac{31\pi}{180}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n+1\right)!}\cdot\left(\frac{31\pi}{180}\right)^{2n+1}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n\right)!}\cdot\left(\frac{31\pi}{180}\right)^{2n}\) \(\frac{\sin31^\circ}{\cos31^\circ}\) \(\frac{\cos31^\circ}{\sin31^\circ}\) \(\frac{1}{\cos31^\circ}\) \(\frac{1}{\sin31^\circ}\)
\(32^\circ\) \(\frac{8\pi}{45}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n+1\right)!}\cdot\left(\frac{8\pi}{45}\right)^{2n+1}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n\right)!}\cdot\left(\frac{8\pi}{45}\right)^{2n}\) \(\frac{\sin32^\circ}{\cos32^\circ}\) \(\frac{\cos32^\circ}{\sin32^\circ}\) \(\frac{1}{\cos32^\circ}\) \(\frac{1}{\sin32^\circ}\)
\(33^\circ\) \(\frac{11\pi}{60}\) \(\frac{\left(\sqrt{6}-\sqrt{2}\right)\sqrt{4-\left(\phi-1\right)^{2}}+\left(\sqrt{6}+\sqrt{2}\right)\left(\phi-1\right)}{8}\) \(\frac{\left(\sqrt{6}+\sqrt{2}\right)\sqrt{4-\left(\phi-1\right)^{2}}-\left(\sqrt{6}-\sqrt{2}\right)\left(\phi-1\right)}{8}\) \(\frac{\left(\sqrt{6}-\sqrt{2}\right)\sqrt{4-\left(\phi-1\right)^{2}}+\left(\sqrt{6}+\sqrt{2}\right)\left(\phi-1\right)}{\left(\sqrt{6}+\sqrt{2}\right)\sqrt{4-\left(\phi-1\right)^{2}}-\left(\sqrt{6}-\sqrt{2}\right)\left(\phi-1\right)}\) \(\frac{\left(\sqrt{6}+\sqrt{2}\right)\sqrt{4-\left(\phi-1\right)^{2}}-\left(\sqrt{6}-\sqrt{2}\right)\left(\phi-1\right)}{\left(\sqrt{6}-\sqrt{2}\right)\sqrt{4-\left(\phi-1\right)^{2}}+\left(\sqrt{6}+\sqrt{2}\right)\left(\phi-1\right)}\) \(\frac{8}{\left(\sqrt{6}+\sqrt{2}\right)\sqrt{4-\left(\phi-1\right)^{2}}-\left(\sqrt{6}-\sqrt{2}\right)\left(\phi-1\right)}\) \(\frac{8}{\left(\sqrt{6}-\sqrt{2}\right)\sqrt{4-\left(\phi-1\right)^{2}}+\left(\sqrt{6}+\sqrt{2}\right)\left(\phi-1\right)}\)
\(34^\circ\) \(\frac{17\pi}{90}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n+1\right)!}\cdot\left(\frac{17\pi}{90}\right)^{2n+1}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n\right)!}\cdot\left(\frac{17\pi}{90}\right)^{2n}\) \(\frac{\sin34^\circ}{\cos34^\circ}\) \(\frac{\cos34^\circ}{\sin34^\circ}\) \(\frac{1}{\cos34^\circ}\) \(\frac{1}{\sin34^\circ}\)
\(35^\circ\) \(\frac{7\pi}{36}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n+1\right)!}\cdot\left(\frac{7\pi}{36}\right)^{2n+1}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n\right)!}\cdot\left(\frac{7\pi}{36}\right)^{2n}\) \(\frac{\sin35^\circ}{\cos35^\circ}\) \(\frac{\cos35^\circ}{\sin35^\circ}\) \(\frac{1}{\cos35^\circ}\) \(\frac{1}{\sin35^\circ}\)
\(36^\circ\) \(\frac{\pi}{5}\) \(\frac{\sqrt{4-\phi^{2}}}{2}\) \(\frac{\phi}{2}\) \(\frac{\sqrt{4-\phi^{2}}}{\phi}\) \(\frac{\phi}{\sqrt{4-\phi^{2}}}\) \(\frac{2}{\phi}\) \(\frac{2}{\sqrt{4-\phi^{2}}}\)
\(37^\circ\) \(\frac{37\pi}{180}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n+1\right)!}\cdot\left(\frac{37\pi}{180}\right)^{2n+1}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n\right)!}\cdot\left(\frac{37\pi}{180}\right)^{2n}\) \(\frac{\sin37^\circ}{\cos37^\circ}\) \(\frac{\cos37^\circ}{\sin37^\circ}\) \(\frac{1}{\cos37^\circ}\) \(\frac{1}{\sin37^\circ}\)
\(38^\circ\) \(\frac{19\pi}{90}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n+1\right)!}\cdot\left(\frac{19\pi}{90}\right)^{2n+1}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n\right)!}\cdot\left(\frac{19\pi}{90}\right)^{2n}\) \(\frac{\sin38^\circ}{\cos38^\circ}\) \(\frac{\cos38^\circ}{\sin38^\circ}\) \(\frac{1}{\cos38^\circ}\) \(\frac{1}{\sin38^\circ}\)
\(39^\circ\) \(\frac{13\pi}{60}\) \(\frac{\left(\sqrt{6}-\sqrt{2}\right)\left(\phi+\sqrt{12-3\phi^{2}}\right)+\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{3}\phi-\sqrt{4-\phi^{2}}\right)}{16}\) \(\frac{\left(\sqrt{6}+\sqrt{2}\right)\left(\phi+\sqrt{12-3\phi^{2}}\right)+\left(\sqrt{6}-\sqrt{2}\right)\left(\sqrt{4-\phi^{2}}-\sqrt{3}\phi\right)}{16}\) \(\frac{\left(\sqrt{6}-\sqrt{2}\right)\left(\phi+\sqrt{12-3\phi^{2}}\right)+\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{3}\phi-\sqrt{4-\phi^{2}}\right)}{\left(\sqrt{6}+\sqrt{2}\right)\left(\phi+\sqrt{12-3\phi^{2}}\right)+\left(\sqrt{6}-\sqrt{2}\right)\left(\sqrt{4-\phi^{2}}-\sqrt{3}\phi\right)}\) \(\frac{\left(\sqrt{6}+\sqrt{2}\right)\left(\phi+\sqrt{12-3\phi^{2}}\right)+\left(\sqrt{6}-\sqrt{2}\right)\left(\sqrt{4-\phi^{2}}-\sqrt{3}\phi\right)}{\left(\sqrt{6}-\sqrt{2}\right)\left(\phi+\sqrt{12-3\phi^{2}}\right)+\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{3}\phi-\sqrt{4-\phi^{2}}\right)}\) \(\frac{16}{\left(\sqrt{6}+\sqrt{2}\right)\left(\phi+\sqrt{12-3\phi^{2}}\right)+\left(\sqrt{6}-\sqrt{2}\right)\left(\sqrt{4-\phi^{2}}-\sqrt{3}\phi\right)}\) \(\frac{16}{\left(\sqrt{6}-\sqrt{2}\right)\left(\phi+\sqrt{12-3\phi^{2}}\right)+\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{3}\phi-\sqrt{4-\phi^{2}}\right)}\)
\(40^\circ\) \(\frac{2\pi}{9}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n+1\right)!}\cdot\left(\frac{2\pi}{9}\right)^{2n+1}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n\right)!}\cdot\left(\frac{2\pi}{9}\right)^{2n}\) \(\frac{\sin40^\circ}{\cos40^\circ}\) \(\frac{\cos40^\circ}{\sin40^\circ}\) \(\frac{1}{\cos40^\circ}\) \(\frac{1}{\sin40^\circ}\)
\(41^\circ\) \(\frac{41\pi}{180}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n+1\right)!}\cdot\left(\frac{41\pi}{180}\right)^{2n+1}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n\right)!}\cdot\left(\frac{41\pi}{180}\right)^{2n}\) \(\frac{\sin41^\circ}{\cos41^\circ}\) \(\frac{\cos41^\circ}{\sin41^\circ}\) \(\frac{1}{\cos41^\circ}\) \(\frac{1}{\sin41^\circ}\)
\(42^\circ\) \(\frac{7\pi}{30}\) \(\frac{\sqrt{12-3\left(\phi-1\right)^{2}}-\phi+1}{4}\) \(\frac{\sqrt{3}\phi-\sqrt{3}+\sqrt{4-\left(\phi-1\right)^{2}}}{4}\) \(\frac{\sqrt{12-3\left(\phi-1\right)^{2}}-\phi+1}{\sqrt{3}\phi-\sqrt{3}+\sqrt{4-\left(\phi-1\right)^{2}}}\) \(\frac{\sqrt{3}\phi-\sqrt{3}+\sqrt{4-\left(\phi-1\right)^{2}}}{\sqrt{12-3\left(\phi-1\right)^{2}}-\phi+1}\) \(\frac{4}{\sqrt{3}\phi-\sqrt{3}+\sqrt{4-\left(\phi-1\right)^{2}}}\) \(\frac{4}{\sqrt{12-3\left(\phi-1\right)^{2}}-\phi+1}\)
\(43^\circ\) \(\frac{43\pi}{180}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n+1\right)!}\cdot\left(\frac{43\pi}{180}\right)^{2n+1}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n\right)!}\cdot\left(\frac{43\pi}{180}\right)^{2n}\) \(\frac{\sin43^\circ}{\cos43^\circ}\) \(\frac{\cos43^\circ}{\sin43^\circ}\) \(\frac{1}{\cos43^\circ}\) \(\frac{1}{\sin43^\circ}\)
\(44^\circ\) \(\frac{11\pi}{45}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n+1\right)!}\cdot\left(\frac{11\pi}{45}\right)^{2n+1}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n\right)!}\cdot\left(\frac{11\pi}{45}\right)^{2n}\) \(\frac{\sin44^\circ}{\cos44^\circ}\) \(\frac{\cos44^\circ}{\sin44^\circ}\) \(\frac{1}{\cos44^\circ}\) \(\frac{1}{\sin44^\circ}\)
\(45^\circ\) \(\frac{\pi}{4}\) \(\frac{1}{\sqrt{2}}\) \(\frac{1}{\sqrt{2}}\) \(1\) \(1\) \(\sqrt{2}\) \(\sqrt{2}\)
\(46^\circ\) \(\frac{23\pi}{90}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n+1\right)!}\cdot\left(\frac{23\pi}{90}\right)^{2n+1}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n\right)!}\cdot\left(\frac{23\pi}{90}\right)^{2n}\) \(\frac{\sin46^\circ}{\cos46^\circ}\) \(\frac{\cos46^\circ}{\sin46^\circ}\) \(\frac{1}{\cos46^\circ}\) \(\frac{1}{\sin46^\circ}\)
\(47^\circ\) \(\frac{47\pi}{180}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n+1\right)!}\cdot\left(\frac{47\pi}{180}\right)^{2n+1}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n\right)!}\cdot\left(\frac{47\pi}{180}\right)^{2n}\) \(\frac{\sin47^\circ}{\cos47^\circ}\) \(\frac{\cos47^\circ}{\sin47^\circ}\) \(\frac{1}{\cos47^\circ}\) \(\frac{1}{\sin47^\circ}\)
\(48^\circ\) \(\frac{4\pi}{15}\) \(\frac{\sqrt{3}\phi-\sqrt{3}+\sqrt{4-\left(\phi-1\right)^{2}}}{4}\) \(\frac{\sqrt{12-3\left(\phi-1\right)^{2}}-\phi+1}{4}\) \(\frac{\sqrt{3}\phi-\sqrt{3}+\sqrt{4-\left(\phi-1\right)^{2}}}{\sqrt{12-3\left(\phi-1\right)^{2}}-\phi+1}\) \(\frac{\sqrt{12-3\left(\phi-1\right)^{2}}-\phi+1}{\sqrt{3}\phi-\sqrt{3}+\sqrt{4-\left(\phi-1\right)^{2}}}\) \(\frac{4}{\sqrt{12-3\left(\phi-1\right)^{2}}-\phi+1}\) \(\frac{4}{\sqrt{3}\phi-\sqrt{3}+\sqrt{4-\left(\phi-1\right)^{2}}}\)
\(49^\circ\) \(\frac{49\pi}{180}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n+1\right)!}\cdot\left(\frac{49\pi}{180}\right)^{2n+1}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n\right)!}\cdot\left(\frac{49\pi}{180}\right)^{2n}\) \(\frac{\sin49^\circ}{\cos49^\circ}\) \(\frac{\cos49^\circ}{\sin49^\circ}\) \(\frac{1}{\cos49^\circ}\) \(\frac{1}{\sin49^\circ}\)
\(50^\circ\) \(\frac{5\pi}{18}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n+1\right)!}\cdot\left(\frac{5\pi}{18}\right)^{2n+1}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n\right)!}\cdot\left(\frac{5\pi}{18}\right)^{2n}\) \(\frac{\sin50^\circ}{\cos50^\circ}\) \(\frac{\cos50^\circ}{\sin50^\circ}\) \(\frac{1}{\cos50^\circ}\) \(\frac{1}{\sin50^\circ}\)
\(51^\circ\) \(\frac{17\pi}{60}\) \(\frac{\left(\sqrt{6}+\sqrt{2}\right)\left(\phi+\sqrt{12-3\phi^{2}}\right)+\left(\sqrt{6}-\sqrt{2}\right)\left(\sqrt{4-\phi^{2}}-\sqrt{3}\phi\right)}{16}\) \(\frac{\left(\sqrt{6}-\sqrt{2}\right)\left(\phi+\sqrt{12-3\phi^{2}}\right)+\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{3}\phi-\sqrt{4-\phi^{2}}\right)}{16}\) \(\frac{\left(\sqrt{6}+\sqrt{2}\right)\left(\phi+\sqrt{12-3\phi^{2}}\right)+\left(\sqrt{6}-\sqrt{2}\right)\left(\sqrt{4-\phi^{2}}-\sqrt{3}\phi\right)}{\left(\sqrt{6}-\sqrt{2}\right)\left(\phi+\sqrt{12-3\phi^{2}}\right)+\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{3}\phi-\sqrt{4-\phi^{2}}\right)}\) \(\frac{\left(\sqrt{6}-\sqrt{2}\right)\left(\phi+\sqrt{12-3\phi^{2}}\right)+\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{3}\phi-\sqrt{4-\phi^{2}}\right)}{\left(\sqrt{6}+\sqrt{2}\right)\left(\phi+\sqrt{12-3\phi^{2}}\right)+\left(\sqrt{6}-\sqrt{2}\right)\left(\sqrt{4-\phi^{2}}-\sqrt{3}\phi\right)}\) \(\frac{16}{\left(\sqrt{6}-\sqrt{2}\right)\left(\phi+\sqrt{12-3\phi^{2}}\right)+\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{3}\phi-\sqrt{4-\phi^{2}}\right)}\) \(\frac{16}{\left(\sqrt{6}+\sqrt{2}\right)\left(\phi+\sqrt{12-3\phi^{2}}\right)+\left(\sqrt{6}-\sqrt{2}\right)\left(\sqrt{4-\phi^{2}}-\sqrt{3}\phi\right)}\)
\(52^\circ\) \(\frac{13\pi}{45}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n+1\right)!}\cdot\left(\frac{13\pi}{45}\right)^{2n+1}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n\right)!}\cdot\left(\frac{13\pi}{45}\right)^{2n}\) \(\frac{\sin52^\circ}{\cos52^\circ}\) \(\frac{\cos52^\circ}{\sin52^\circ}\) \(\frac{1}{\cos52^\circ}\) \(\frac{1}{\sin52^\circ}\)
\(53^\circ\) \(\frac{53\pi}{180}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n+1\right)!}\cdot\left(\frac{53\pi}{180}\right)^{2n+1}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n\right)!}\cdot\left(\frac{53\pi}{180}\right)^{2n}\) \(\frac{\sin53^\circ}{\cos53^\circ}\) \(\frac{\cos53^\circ}{\sin53^\circ}\) \(\frac{1}{\cos53^\circ}\) \(\frac{1}{\sin53^\circ}\)
\(54^\circ\) \(\frac{3\pi}{10}\) \(\frac{\phi}{2}\) \(\frac{\sqrt{4-\phi^{2}}}{2}\) \(\frac{\phi}{\sqrt{4-\phi^{2}}}\) \(\frac{\sqrt{4-\phi^{2}}}{\phi}\) \(\frac{2}{\sqrt{4-\phi^{2}}}\) \(\frac{2}{\phi}\)
\(55^\circ\) \(\frac{11\pi}{36}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n+1\right)!}\cdot\left(\frac{11\pi}{36}\right)^{2n+1}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n\right)!}\cdot\left(\frac{11\pi}{36}\right)^{2n}\) \(\frac{\sin55^\circ}{\cos55^\circ}\) \(\frac{\cos55^\circ}{\sin55^\circ}\) \(\frac{1}{\cos55^\circ}\) \(\frac{1}{\sin55^\circ}\)
\(56^\circ\) \(\frac{14\pi}{45}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n+1\right)!}\cdot\left(\frac{14\pi}{45}\right)^{2n+1}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n\right)!}\cdot\left(\frac{14\pi}{45}\right)^{2n}\) \(\frac{\sin56^\circ}{\cos56^\circ}\) \(\frac{\cos56^\circ}{\sin56^\circ}\) \(\frac{1}{\cos56^\circ}\) \(\frac{1}{\sin56^\circ}\)
\(57^\circ\) \(\frac{19\pi}{60}\) \(\frac{\left(\sqrt{6}+\sqrt{2}\right)\sqrt{4-\left(\phi-1\right)^{2}}-\left(\sqrt{6}-\sqrt{2}\right)\left(\phi-1\right)}{8}\) \(\frac{\left(\sqrt{6}-\sqrt{2}\right)\sqrt{4-\left(\phi-1\right)^{2}}+\left(\sqrt{6}+\sqrt{2}\right)\left(\phi-1\right)}{8}\) \(\frac{\left(\sqrt{6}+\sqrt{2}\right)\sqrt{4-\left(\phi-1\right)^{2}}-\left(\sqrt{6}-\sqrt{2}\right)\left(\phi-1\right)}{\left(\sqrt{6}-\sqrt{2}\right)\sqrt{4-\left(\phi-1\right)^{2}}+\left(\sqrt{6}+\sqrt{2}\right)\left(\phi-1\right)}\) \(\frac{\left(\sqrt{6}-\sqrt{2}\right)\sqrt{4-\left(\phi-1\right)^{2}}+\left(\sqrt{6}+\sqrt{2}\right)\left(\phi-1\right)}{\left(\sqrt{6}+\sqrt{2}\right)\sqrt{4-\left(\phi-1\right)^{2}}-\left(\sqrt{6}-\sqrt{2}\right)\left(\phi-1\right)}\) \(\frac{8}{\left(\sqrt{6}-\sqrt{2}\right)\sqrt{4-\left(\phi-1\right)^{2}}+\left(\sqrt{6}+\sqrt{2}\right)\left(\phi-1\right)}\) \(\frac{8}{\left(\sqrt{6}+\sqrt{2}\right)\sqrt{4-\left(\phi-1\right)^{2}}-\left(\sqrt{6}-\sqrt{2}\right)\left(\phi-1\right)}\)
\(58^\circ\) \(\frac{29\pi}{90}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n+1\right)!}\cdot\left(\frac{29\pi}{90}\right)^{2n+1}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n\right)!}\cdot\left(\frac{29\pi}{90}\right)^{2n}\) \(\frac{\sin58^\circ}{\cos58^\circ}\) \(\frac{\cos58^\circ}{\sin58^\circ}\) \(\frac{1}{\cos58^\circ}\) \(\frac{1}{\sin58^\circ}\)
\(59^\circ\) \(\frac{59\pi}{180}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n+1\right)!}\cdot\left(\frac{59\pi}{180}\right)^{2n+1}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n\right)!}\cdot\left(\frac{59\pi}{180}\right)^{2n}\) \(\frac{\sin59^\circ}{\cos59^\circ}\) \(\frac{\cos59^\circ}{\sin59^\circ}\) \(\frac{1}{\cos59^\circ}\) \(\frac{1}{\sin59^\circ}\)
\(60^\circ\) \(\frac{\pi}{3}\) \(\frac{\sqrt{3}}{2}\) \(\frac{1}{2}\) \(\sqrt{3}\) \(\frac{1}{\sqrt{3}}\) \(2\) \(\frac{2}{\sqrt{3}}\)
\(61^\circ\) \(\frac{61\pi}{180}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n+1\right)!}\cdot\left(\frac{61\pi}{180}\right)^{2n+1}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n\right)!}\cdot\left(\frac{61\pi}{180}\right)^{2n}\) \(\frac{\sin61^\circ}{\cos61^\circ}\) \(\frac{\cos61^\circ}{\sin61^\circ}\) \(\frac{1}{\cos61^\circ}\) \(\frac{1}{\sin61^\circ}\)
\(62^\circ\) \(\frac{31\pi}{90}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n+1\right)!}\cdot\left(\frac{31\pi}{90}\right)^{2n+1}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n\right)!}\cdot\left(\frac{31\pi}{90}\right)^{2n}\) \(\frac{\sin62^\circ}{\cos62^\circ}\) \(\frac{\cos62^\circ}{\sin62^\circ}\) \(\frac{1}{\cos62^\circ}\) \(\frac{1}{\sin62^\circ}\)
\(63^\circ\) \(\frac{7\pi}{20}\) \(\frac{\phi-1+\sqrt{4-\left(\phi-1\right)^{2}}}{2\sqrt{2}}\) \(\frac{\sqrt{4-\left(\phi-1\right)^{2}}-\phi+1}{2\sqrt{2}}\) \(\frac{\phi-1+\sqrt{4-\left(\phi-1\right)^{2}}}{\sqrt{4-\left(\phi-1\right)^{2}}-\phi+1}\) \(\frac{\sqrt{4-\left(\phi-1\right)^{2}}-\phi+1}{\phi-1+\sqrt{4-\left(\phi-1\right)^{2}}}\) \(\frac{2\sqrt{2}}{\sqrt{4-\left(\phi-1\right)^{2}}-\phi+1}\) \(\frac{2\sqrt{2}}{\phi-1+\sqrt{4-\left(\phi-1\right)^{2}}}\)
\(64^\circ\) \(\frac{16\pi}{45}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n+1\right)!}\cdot\left(\frac{16\pi}{45}\right)^{2n+1}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n\right)!}\cdot\left(\frac{16\pi}{45}\right)^{2n}\) \(\frac{\sin64^\circ}{\cos64^\circ}\) \(\frac{\cos64^\circ}{\sin64^\circ}\) \(\frac{1}{\cos64^\circ}\) \(\frac{1}{\sin64^\circ}\)
\(65^\circ\) \(\frac{13\pi}{36}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n+1\right)!}\cdot\left(\frac{13\pi}{36}\right)^{2n+1}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n\right)!}\cdot\left(\frac{13\pi}{36}\right)^{2n}\) \(\frac{\sin65^\circ}{\cos65^\circ}\) \(\frac{\cos65^\circ}{\sin65^\circ}\) \(\frac{1}{\cos65^\circ}\) \(\frac{1}{\sin65^\circ}\)
\(66^\circ\) \(\frac{11\pi}{30}\) \(\frac{\phi+\sqrt{12-3\phi^{2}}}{4}\) \(\frac{\sqrt{3}\phi-\sqrt{4-\phi^{2}}}{4}\) \(\frac{\phi+\sqrt{12-3\phi^{2}}}{\sqrt{3}\phi-\sqrt{4-\phi^{2}}}\) \(\frac{\sqrt{3}\phi-\sqrt{4-\phi^{2}}}{\phi+\sqrt{12-3\phi^{2}}}\) \(\frac{4}{\sqrt{3}\phi-\sqrt{4-\phi^{2}}}\) \(\frac{4}{\phi+\sqrt{12-3\phi^{2}}}\)
\(67^\circ\) \(\frac{67\pi}{180}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n+1\right)!}\cdot\left(\frac{67\pi}{180}\right)^{2n+1}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n\right)!}\cdot\left(\frac{67\pi}{180}\right)^{2n}\) \(\frac{\sin67^\circ}{\cos67^\circ}\) \(\frac{\cos67^\circ}{\sin67^\circ}\) \(\frac{1}{\cos67^\circ}\) \(\frac{1}{\sin67^\circ}\)
\(68^\circ\) \(\frac{17\pi}{45}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n+1\right)!}\cdot\left(\frac{17\pi}{45}\right)^{2n+1}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n\right)!}\cdot\left(\frac{17\pi}{45}\right)^{2n}\) \(\frac{\sin68^\circ}{\cos68^\circ}\) \(\frac{\cos68^\circ}{\sin68^\circ}\) \(\frac{1}{\cos68^\circ}\) \(\frac{1}{\sin68^\circ}\)
\(69^\circ\) \(\frac{23\pi}{60}\) \(\frac{\left(\sqrt{6}-\sqrt{2}\right)\sqrt{4-\phi^{2}}+\phi\left(\sqrt{6}+\sqrt{2}\right)}{8}\) \(\frac{\left(\sqrt{6}+\sqrt{2}\right)\sqrt{4-\phi^{2}}-\phi\left(\sqrt{6}-\sqrt{2}\right)}{8}\) \(\frac{\left(\sqrt{6}-\sqrt{2}\right)\sqrt{4-\phi^{2}}+\phi\left(\sqrt{6}+\sqrt{2}\right)}{\left(\sqrt{6}+\sqrt{2}\right)\sqrt{4-\phi^{2}}-\phi\left(\sqrt{6}-\sqrt{2}\right)}\) \(\frac{\left(\sqrt{6}+\sqrt{2}\right)\sqrt{4-\phi^{2}}-\phi\left(\sqrt{6}-\sqrt{2}\right)}{\left(\sqrt{6}-\sqrt{2}\right)\sqrt{4-\phi^{2}}+\phi\left(\sqrt{6}+\sqrt{2}\right)}\) \(\frac{8}{\left(\sqrt{6}+\sqrt{2}\right)\sqrt{4-\phi^{2}}-\phi\left(\sqrt{6}-\sqrt{2}\right)}\) \(\frac{8}{\left(\sqrt{6}-\sqrt{2}\right)\sqrt{4-\phi^{2}}+\phi\left(\sqrt{6}+\sqrt{2}\right)}\)
\(70^\circ\) \(\frac{7\pi}{18}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n+1\right)!}\cdot\left(\frac{7\pi}{18}\right)^{2n+1}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n\right)!}\cdot\left(\frac{7\pi}{18}\right)^{2n}\) \(\frac{\sin70^\circ}{\cos70^\circ}\) \(\frac{\cos70^\circ}{\sin70^\circ}\) \(\frac{1}{\cos70^\circ}\) \(\frac{1}{\sin70^\circ}\)
\(71^\circ\) \(\frac{71\pi}{180}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n+1\right)!}\cdot\left(\frac{71\pi}{180}\right)^{2n+1}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n\right)!}\cdot\left(\frac{71\pi}{180}\right)^{2n}\) \(\frac{\sin71^\circ}{\cos71^\circ}\) \(\frac{\cos71^\circ}{\sin71^\circ}\) \(\frac{1}{\cos71^\circ}\) \(\frac{1}{\sin71^\circ}\)
\(72^\circ\) \(\frac{2\pi}{5}\) \(\frac{\sqrt{4-\left(\phi-1\right)^{2}}}{2}\) \(\frac{\phi-1}{2}\) \(\frac{\sqrt{4-\left(\phi-1\right)^{2}}}{\phi-1}\) \(\frac{\phi-1}{\sqrt{4-\left(\phi-1\right)^{2}}}\) \(\frac{2}{\phi-1}\) \(\frac{2}{\sqrt{4-\left(\phi-1\right)^{2}}}\)
\(73^\circ\) \(\frac{73\pi}{180}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n+1\right)!}\cdot\left(\frac{73\pi}{180}\right)^{2n+1}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n\right)!}\cdot\left(\frac{73\pi}{180}\right)^{2n}\) \(\frac{\sin73^\circ}{\cos73^\circ}\) \(\frac{\cos73^\circ}{\sin73^\circ}\) \(\frac{1}{\cos73^\circ}\) \(\frac{1}{\sin73^\circ}\)
\(74^\circ\) \(\frac{37\pi}{90}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n+1\right)!}\cdot\left(\frac{37\pi}{90}\right)^{2n+1}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n\right)!}\cdot\left(\frac{37\pi}{90}\right)^{2n}\) \(\frac{\sin74^\circ}{\cos74^\circ}\) \(\frac{\cos74^\circ}{\sin74^\circ}\) \(\frac{1}{\cos74^\circ}\) \(\frac{1}{\sin74^\circ}\)
\(75^\circ\) \(\frac{5\pi}{12}\) \(\frac{\sqrt{6}+\sqrt{2}}{4}\) \(\frac{\sqrt{6}-\sqrt{2}}{4}\) \(2+\sqrt{3}\) \(2-\sqrt{3}\) \(\sqrt{6}+\sqrt{2}\) \(\sqrt{6}-\sqrt{2}\)
\(76^\circ\) \(\frac{19\pi}{45}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n+1\right)!}\cdot\left(\frac{19\pi}{45}\right)^{2n+1}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n\right)!}\cdot\left(\frac{19\pi}{45}\right)^{2n}\) \(\frac{\sin76^\circ}{\cos76^\circ}\) \(\frac{\cos76^\circ}{\sin76^\circ}\) \(\frac{1}{\cos76^\circ}\) \(\frac{1}{\sin76^\circ}\)
\(77^\circ\) \(\frac{77\pi}{180}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n+1\right)!}\cdot\left(\frac{77\pi}{180}\right)^{2n+1}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n\right)!}\cdot\left(\frac{77\pi}{180}\right)^{2n}\) \(\frac{\sin77^\circ}{\cos77^\circ}\) \(\frac{\cos77^\circ}{\sin77^\circ}\) \(\frac{1}{\cos77^\circ}\) \(\frac{1}{\sin77^\circ}\)
\(78^\circ\) \(\frac{13\pi}{30}\) \(\frac{\phi-1+\sqrt{12-3\left(\phi-1\right)^{2}}}{4}\) \(\frac{\sqrt{4-\left(\phi-1\right)^{2}}-\sqrt{3}\phi+\sqrt{3}}{4}\) \(\frac{\phi-1+\sqrt{12-3\left(\phi-1\right)^{2}}}{\sqrt{4-\left(\phi-1\right)^{2}}-\sqrt{3}\phi+\sqrt{3}}\) \(\frac{\sqrt{4-\left(\phi-1\right)^{2}}-\sqrt{3}\phi+\sqrt{3}}{\phi-1+\sqrt{12-3\left(\phi-1\right)^{2}}}\) \(\frac{4}{\sqrt{4-\left(\phi-1\right)^{2}}-\sqrt{3}\phi+\sqrt{3}}\) \(\frac{4}{\phi-1+\sqrt{12-3\left(\phi-1\right)^{2}}}\)
\(79^\circ\) \(\frac{79\pi}{180}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n+1\right)!}\cdot\left(\frac{79\pi}{180}\right)^{2n+1}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n\right)!}\cdot\left(\frac{79\pi}{180}\right)^{2n}\) \(\frac{\sin79^\circ}{\cos79^\circ}\) \(\frac{\cos79^\circ}{\sin79^\circ}\) \(\frac{1}{\cos79^\circ}\) \(\frac{1}{\sin79^\circ}\)
\(80^\circ\) \(\frac{4\pi}{9}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n+1\right)!}\cdot\left(\frac{4\pi}{9}\right)^{2n+1}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n\right)!}\cdot\left(\frac{4\pi}{9}\right)^{2n}\) \(\frac{\sin80^\circ}{\cos80^\circ}\) \(\frac{\cos80^\circ}{\sin80^\circ}\) \(\frac{1}{\cos80^\circ}\) \(\frac{1}{\sin80^\circ}\)
\(81^\circ\) \(\frac{9\pi}{20}\) \(\frac{\sqrt{4-\phi^{2}}+\phi}{2\sqrt{2}}\) \(\frac{\phi-\sqrt{4-\phi^{2}}}{2\sqrt{2}}\) \(\frac{\sqrt{4-\phi^{2}}+\phi}{\phi-\sqrt{4-\phi^{2}}}\) \(\frac{\phi-\sqrt{4-\phi^{2}}}{\sqrt{4-\phi^{2}}+\phi}\) \(\frac{2\sqrt{2}}{\phi-\sqrt{4-\phi^{2}}}\) \(\frac{2\sqrt{2}}{\sqrt{4-\phi^{2}}+\phi}\)
\(82^\circ\) \(\frac{41\pi}{90}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n+1\right)!}\cdot\left(\frac{41\pi}{90}\right)^{2n+1}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n\right)!}\cdot\left(\frac{41\pi}{90}\right)^{2n}\) \(\frac{\sin82^\circ}{\cos82^\circ}\) \(\frac{\cos82^\circ}{\sin82^\circ}\) \(\frac{1}{\cos82^\circ}\) \(\frac{1}{\sin82^\circ}\)
\(83^\circ\) \(\frac{83\pi}{180}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n+1\right)!}\cdot\left(\frac{83\pi}{180}\right)^{2n+1}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n\right)!}\cdot\left(\frac{83\pi}{180}\right)^{2n}\) \(\frac{\sin83^\circ}{\cos83^\circ}\) \(\frac{\cos83^\circ}{\sin83^\circ}\) \(\frac{1}{\cos83^\circ}\) \(\frac{1}{\sin83^\circ}\)
\(84^\circ\) \(\frac{7\pi}{15}\) \(\frac{\sqrt{3}\phi+\sqrt{4-\phi^{2}}}{4}\) \(\frac{\sqrt{12-3\phi^{2}}-\phi}{4}\) \(\frac{\sqrt{3}\phi+\sqrt{4-\phi^{2}}}{\sqrt{12-3\phi^{2}}-\phi}\) \(\frac{\sqrt{12-3\phi^{2}}-\phi}{\sqrt{3}\phi+\sqrt{4-\phi^{2}}}\) \(\frac{4}{\sqrt{12-3\phi^{2}}-\phi}\) \(\frac{4}{\sqrt{3}\phi+\sqrt{4-\phi^{2}}}\)
\(85^\circ\) \(\frac{17\pi}{36}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n+1\right)!}\cdot\left(\frac{17\pi}{36}\right)^{2n+1}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n\right)!}\cdot\left(\frac{17\pi}{36}\right)^{2n}\) \(\frac{\sin85^\circ}{\cos85^\circ}\) \(\frac{\cos85^\circ}{\sin85^\circ}\) \(\frac{1}{\cos85^\circ}\) \(\frac{1}{\sin85^\circ}\)
\(86^\circ\) \(\frac{43\pi}{90}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n+1\right)!}\cdot\left(\frac{43\pi}{90}\right)^{2n+1}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n\right)!}\cdot\left(\frac{43\pi}{90}\right)^{2n}\) \(\frac{\sin86^\circ}{\cos86^\circ}\) \(\frac{\cos86^\circ}{\sin86^\circ}\) \(\frac{1}{\cos86^\circ}\) \(\frac{1}{\sin86^\circ}\)
\(87^\circ\) \(\frac{29\pi}{60}\) \(\frac{\left(\phi-1\right)\left(\sqrt{6}-\sqrt{2}\right)+\left(\sqrt{6}+\sqrt{2}\right)\sqrt{4-\left(\phi-1\right)^{2}}}{8}\) \(\frac{\left(\phi-1\right)\left(\sqrt{6}+\sqrt{2}\right)-\left(\sqrt{6}-\sqrt{2}\right)\sqrt{4-\left(\phi-1\right)^{2}}}{8}\) \(\frac{\left(\phi-1\right)\left(\sqrt{6}-\sqrt{2}\right)+\left(\sqrt{6}+\sqrt{2}\right)\sqrt{4-\left(\phi-1\right)^{2}}}{\left(\phi-1\right)\left(\sqrt{6}+\sqrt{2}\right)-\left(\sqrt{6}-\sqrt{2}\right)\sqrt{4-\left(\phi-1\right)^{2}}}\) \(\frac{\left(\phi-1\right)\left(\sqrt{6}+\sqrt{2}\right)-\left(\sqrt{6}-\sqrt{2}\right)\sqrt{4-\left(\phi-1\right)^{2}}}{\left(\phi-1\right)\left(\sqrt{6}-\sqrt{2}\right)+\left(\sqrt{6}+\sqrt{2}\right)\sqrt{4-\left(\phi-1\right)^{2}}}\) \(\frac{8}{\left(\phi-1\right)\left(\sqrt{6}+\sqrt{2}\right)-\left(\sqrt{6}-\sqrt{2}\right)\sqrt{4-\left(\phi-1\right)^{2}}}\) \(\frac{8}{\left(\phi-1\right)\left(\sqrt{6}-\sqrt{2}\right)+\left(\sqrt{6}+\sqrt{2}\right)\sqrt{4-\left(\phi-1\right)^{2}}}\)
\(88^\circ\) \(\frac{22\pi}{45}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n+1\right)!}\cdot\left(\frac{22\pi}{45}\right)^{2n+1}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n\right)!}\cdot\left(\frac{22\pi}{45}\right)^{2n}\) \(\frac{\sin88^\circ}{\cos88^\circ}\) \(\frac{\cos88^\circ}{\sin88^\circ}\) \(\frac{1}{\cos88^\circ}\) \(\frac{1}{\sin88^\circ}\)
\(89^\circ\) \(\frac{89\pi}{180}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n+1\right)!}\cdot\left(\frac{89\pi}{180}\right)^{2n+1}\) \(\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n\right)!}\cdot\left(\frac{89\pi}{180}\right)^{2n}\) \(\frac{\sin89^\circ}{\cos89^\circ}\) \(\frac{\cos89^\circ}{\sin89^\circ}\) \(\frac{1}{\cos89^\circ}\) \(\frac{1}{\sin89^\circ}\)
\(90^\circ\) \(\frac{\pi}{2}\) \(1\) \(0\) \(\text{undefined}\) \(0\) \(\text{underfined}\) \(1\)